metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(9-aminoacridinium) bis(pyridine-2,6dicarboxylato)cuprate(II) trihydrate

Hossein Aghabozorg,^a* Shabnam Ahmadvand,^a Masoud Mirzaei^b and Hamid Reza Khavasi^c

^aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, ^bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and ^cDepartement of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran

Correspondence e-mail: haghabozorg@yahoo.com

Received 6 August 2010; accepted 19 September 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 17.1.

The asymmetric unit of the title compound, $(C_{13}H_{11}N_2)_2$ -[Cu(C₇H₃NO₄)₂]·3H₂O or (9-aminoAcr)[Cu(pydc)₂]·3H₂O, contains a Cu(pydc)₂ (pydc = pyridine-2,6-dicarboxylate) anion, two protonated 9-aminoacridine (9-aminoAcr)⁺ counter-ions and three uncoordinated water molecules. The anion contains a six-coordinated Cu(II) atom within a distorted octahedral geometry. Non-covalent interactions *i.e.* N-H···O and O-H···O hydrogen bonds and intermolecular π - π contacts between the pyridine rings [centroid-centroid distance = 3.7773 (13) Å] and acridine rings [centroid-centroid distance = 3.4897 (13), 3.7784 (14) and 3.8627 (15) Å] result in the formation of a threedimensional network.

Related literature

For related structures, see: Aghabozorg *et al.* (2008, 2010); Eshtiagh-Hosseini *et al.* (2010); Tabatabaee *et al.* (2009). An independent determination of the title compound is reported in the preceeding paper by Derikvand *et al.* (2010).

Experimental

Crystal data

 $(C_{13}H_{11}N_{2})_{2}[Cu(C_{7}H_{3}NO_{4})_{2}]\cdot 3H_{2}O$ $M_{r} = 838.27$ Triclinic, $P\overline{1}$ a = 10.921 (2) Å b = 13.299 (3) Å c = 14.008 (3) Å $\alpha = 102.09$ (3)° $\beta = 103.96$ (3)°

Data collection

STOE IPDS II diffractometer Absorption correction: numerical [shape of crystal determined optically (X-RED32 and X-SHAPE; Stoe & Cie, 2005)] $T_{min} = 0.787, T_{max} = 0.849$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.094$ S = 1.039767 reflections 571 parameters $V = 1820.6 (9) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.67 \text{ mm}^{-1}$ T = 298 K $0.38 \times 0.30 \times 0.25 \text{ mm}$

 $\gamma = 105.38 \ (3)^{\circ}$

21686 measured reflections 9767 independent reflections 7989 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O7$	0.87 (4)	1.98 (4)	2.832 (2)	167 (4)
$O1W-H1WB\cdots O4^{i}$	0.74 (4)	2.14 (4)	2.877 (3)	175 (4)
$O2W - H2WA \cdots O8^{ii}$	0.84 (3)	1.98 (3)	2.820 (3)	174 (3)
$O2W - H2WB \cdots O8$	0.84 (4)	1.98 (4)	2.810 (3)	174 (4)
O3W−H3WA···O2 ⁱⁱⁱ	0.79 (3)	2.01 (3)	2.787 (3)	169 (3)
$O3W - H3WB \cdots O2W^{iv}$	0.84 (3)	1.89 (3)	2.730 (3)	175 (3)
N3−H3 <i>B</i> ···O6	0.83 (2)	1.88 (2)	2.716 (2)	179 (3)
$N4 - H4B \cdot \cdot \cdot O1W^{v}$	0.89 (3)	2.09 (3)	2.938 (3)	158 (2)
$N4 - H4C \cdots O8^{v}$	0.77 (3)	2.27 (3)	2.972 (2)	152 (3)
$N5-H5B\cdots O3W$	0.80(2)	1.91 (2)	2.703 (2)	173 (2)
$N6-H6A\cdots O2^{vi}$	0.87(2)	1.97 (2)	2.819 (2)	164 (2)
$N6-H6B\cdots O5$	0.83 (3)	2.11 (3)	2.888 (2)	158 (2)
Symmetry codes: (i) $-x$	+1, -v + 1, -	-z + 1; (ii)	-x + 1, -y + 2	, -z + 1; (iii)
x, y, z + 1; (iv) $-x$	+2, -y + 2, -	-z + 2; (v) $x + 1, y, z$	z + 1; (vi)
-x+2, -y+1, -z+1.			· · · ·	

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, North Tehran Branch for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2039).

References

- Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.
- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316–m1317.
- Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.

Acta Cryst. (2010). E66, m1318-m1319 [doi:10.1107/S1600536810037499]

Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate

H. Aghabozorg, S. Ahmadvand, M. Mirzaei and H. R. Khavasi

Comment

PydcH₂ as achelating ligand with steric hindrance and weak stacking interactions can offer possibilities to form coordination polymers or dimers through carboxylate bridging. It is known that this ligand exhibits various coordination modes with possible monodentate, bidentate, tridentate, or bridging in transitionmetal-pydc complexes, depending on the prescence of whether the divalent anionic $(pydc)^{2-}$, protonated anionic $(pydcH)^{-}$ or fully protonated $(pydcH_{2})$. In recent years, our research group has been interested in the synthesis of proton transfer compounds including different dicarboxylic acid especially pydcH₂ bearing a number of organic donor ligands containing N, S, and O atoms and in the study of their behavior with diverse metal ions. In this regard, we have reported some proton transfer compounds with acridine (Tabatabaee *et al.*, 2009, Eshtiagh-Hosseini *et al.*, 2010) and proton transfer compounds with various donor and acceptor fragments (further details and related literature see Aghabozorg *et al.*, 2008). We describe here the crystal structure of a new coordination compound based upon Cu^{II} atom, pydcH₂, and 9-aminoAcr. The title compound contains a $[Cu(pydc)_2]^{2-}$ anion, two (9-aminoAcr)⁺ and three uncoordinated water molecules (Fig. 1). In the anion fragment, the Cu^{II} atom is six-coordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from the carboxylate groups of two (pydc)²⁻ ligands, with bond length ranges of 1.9128 (15)–2.3509 (16) Å. The N1—Cu1—N2 [174.31 (6)°], O1—Cu1—O3 [159.47 (5)°] and O5—Cu1—O7 [151.61 (5)°] angles show that the four carboxylate groups of the two (pydc)²⁻ ligands orient in a flattened tetrahedral arrangement around the central atom. The coordination environment around Cu^{II} is distorted octahedral.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) and π ··· π contacts between pyridine rings Cg1··· $Cg1^{i}$ [symmetry code: (i) 2 - x, 2 - y,1 - z, where Cg1 is the centroid of ring N2/C9—C13] and between adjacent acridine rings with centroid-centroid distances between 3.4897 (13) and 3.8627 (15) Å (Fig. 2) stabilize the structure. Furthermore water molecules acting as good gluing factors increase the stability of the crystalline network; further details and related literature about water clusters has been presented in a review article (Aghabozorg *et al.*, 2010).

Experimental

The reaction of copper^{II} nitrate trihydrate (241 mg, 1 mmol), 9-aminoAcr (389 mg, 2 mmol) and $pydcH_2$ (334 mg, 2 mmol) in a 1:2:2 molar ratio in aqueous/ethanolic solution resulted in the formation of green block (9-aminoAcr)⁺₂.[Cu(pydc)₂].3H₂O crystals.

Refinement

C-bound H-atoms were positioned geometrically, with C—H=0.93Å and constrained to ride on their parent atoms with $U_{iso}(H)=1.2U_{eq}$. N-H and O-H (water) H-atoms were located in a difference Fourier map and then refined isotropically.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Extensive $\pi \cdots \pi$ stacking interaction between aromatic rings of 9-aminoAcr ions, (9-aminoAcr)⁺, with centroid-centroid distances ranging from 3.4897 (13)–3.8627 (15) Å. Cg denotes the ring centroid; Cg1=N2/C9-C13, Cg2=C15-C20, Cg3=N3/C15/C20-C22/C27, Cg4=C22-C27, Cg5=C35-C40, Cg6=N5/C28/C33-C35/C40, Cg7=C28-C33. [Symmetry codes : (i) 2-x, 2-y, 1-z; (ii) 2-x, 1-y, 2-z]

Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate

Crystal data

$(C_{13}H_{11}N_2)_2[Cu(C_7H_3NO_4)_2]\cdot 3H_2O$	Z = 2
$M_r = 838.27$	F(000) = 866
Triclinic, <i>P</i> T	$D_{\rm x} = 1.529 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.921 (2) Å	Cell parameters from 342 reflections
<i>b</i> = 13.299 (3) Å	$\theta = 1.7 - 29.3^{\circ}$
c = 14.008 (3) Å	$\mu = 0.67 \text{ mm}^{-1}$
$\alpha = 102.09 \ (3)^{\circ}$	T = 298 K
$\beta = 103.96 \ (3)^{\circ}$	Block, green
$\gamma = 105.38 \ (3)^{\circ}$	$0.38 \times 0.30 \times 0.25 \text{ mm}$
$V = 1820.6 (9) \text{ Å}^3$	

Data collection

STOE IPDS II diffractometer	9767 independent reflections
Radiation source: fine-focus sealed tube	7989 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
Detector resolution: 0.15 mm pixels mm ⁻¹	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
rotation method scans	$h = -14 \rightarrow 14$
Absorption correction: numerical [shape of crystal determined optically (<i>X-RED32</i> and <i>X-SHAPE</i> ; Stoe & Cie, 2005)]	$k = -18 \rightarrow 17$
$T_{\min} = 0.787, \ T_{\max} = 0.849$	$l = -19 \rightarrow 19$
21686 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.094$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0426P)^2 + 0.6394P]$ where $P = (F_0^2 + 2F_c^2)/3$
9767 reflections	$(\Delta/\sigma)_{\rm max} = 0.009$
571 parameters	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	equivalent isotrop	ic displacement	parameters $(Å^2)$
		- 1 ··· · · · · · · · · · · · · · · · ·	rr	r

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.92667 (19)	0.60711 (13)	0.42626 (12)	0.0349 (3)
C2	0.82734 (19)	0.52885 (13)	0.45838 (12)	0.0336 (3)
C3	0.7771 (2)	0.41642 (14)	0.42011 (14)	0.0434 (4)
Н3	0.8050	0.3797	0.3699	0.052*
C4	0.6839 (2)	0.36009 (15)	0.45865 (16)	0.0518 (5)
H4	0.6483	0.2844	0.4338	0.062*
C5	0.6433 (2)	0.41524 (15)	0.53371 (16)	0.0479 (5)
H5	0.5793	0.3777	0.5586	0.057*
C6	0.70022 (19)	0.52775 (14)	0.57088 (13)	0.0365 (4)
C7	0.6773 (2)	0.60503 (15)	0.65600 (14)	0.0405 (4)
C8	1.12179 (19)	0.88335 (15)	0.73752 (13)	0.0374 (4)
C9	1.05336 (17)	0.95035 (13)	0.68217 (12)	0.0300 (3)
C10	1.11455 (18)	1.06105 (14)	0.69997 (13)	0.0359 (4)
H10	1.2007	1.0969	0.7456	0.043*
C11	1.04499 (19)	1.11726 (13)	0.64861 (14)	0.0375 (4)
H11	1.0844	1.1914	0.6585	0.045*
C12	0.91678 (18)	1.06222 (13)	0.58267 (13)	0.0333 (3)

H12	0.8681	1.0990	0.5485	0.040*
C13	0.86124 (17)	0.95140 (12)	0.56785 (12)	0.0289 (3)
C14	0.72275 (18)	0.88280 (14)	0.49429 (13)	0.0347 (3)
C15	1.37185 (16)	0.95961 (13)	1.07213 (13)	0.0324 (3)
C16	1.32913 (19)	1.05136 (15)	1.07799 (16)	0.0418 (4)
H16	1.2923	1.0673	1.0182	0.050*
C17	1.3422 (2)	1.11666 (16)	1.17189 (18)	0.0495 (5)
H17	1.3137	1.1769	1.1756	0.059*
C18	1.3977 (2)	1.09398 (18)	1.26218 (17)	0.0540 (5)
H18	1.4055	1.1389	1.3255	0.065*
C19	1.4404 (2)	1.00637 (17)	1.25805 (15)	0.0478 (5)
H19	1.4777	0.9924	1.3188	0.057*
C20	1.42907 (17)	0.93619 (14)	1.16281 (13)	0.0356 (3)
C21	1.46778 (17)	0.84053 (14)	1.15464 (13)	0.0341 (3)
C22	1.45007 (16)	0.77425 (13)	1.05444 (13)	0.0312 (3)
C23	1.48653 (18)	0.67858 (15)	1.03790 (15)	0.0387 (4)
H23	1.5244	0.6573	1.0939	0.046*
C24	1.4666 (2)	0.61789 (16)	0.94107 (16)	0.0437 (4)
H24	1.4893	0.5547	0.9313	0.052*
C25	1.4119 (2)	0.64989 (16)	0.85545 (15)	0.0441 (4)
H25	1.4005	0.6084	0.7896	0.053*
C26	1.37570 (19)	0.74056 (15)	0.86782 (14)	0.0386 (4)
H26	1.3390	0.7607	0.8107	0.046*
C27	1 39373 (16)	0 80415 (13)	0 96740 (13)	0.0308(3)
C28	1 17771 (16)	0 58124 (14)	1 05864 (13)	0.0338(3)
C29	1 23228 (18)	0.51486 (17)	1 10920 (16)	0.0436 (4)
H29	1 2597	0.5332	1 1806	0.052*
C30	1 24485 (19)	0.42350 (17)	1.05313 (18)	0.032
H30	1 2795	0.3789	1 0866	0.059*
C31	1.2755	0.39600 (16)	0.94593 (19)	0.037 0.0476 (5)
H31	1 2161	0.3336	0.9087	0.057*
C32	1 15397 (18)	0.3550	0.89518 (15)	0.037 0.0384(4)
H32	1 1294	0.4415	0.8238	0.0364 (4)
C33	1.1274	0.55450 (13)	0.95054 (13)	0.040
C34	1.08234 (16)	0.53450(13) 0.62463(12)	0.90149 (12)	0.0300(3) 0.0288(3)
C35	1.06214 (16)	0.02405(12) 0.71546(13)	0.96518(12)	0.0200(3)
C36	0.00460(10)	0.71340(13) 0.78033(14)	0.90318(12) 0.92334(14)	0.0302(3)
H36	0.99400 (19)	0.7663	0.92334 (14)	0.0308 (4)
C37	0.9028	0.86353 (15)	0.0324 0.08634 (17)	0.044
H37	0.9740 (2)	0.80555 (15)	0.98034 (17)	0.0407 (3)
C29	1.0226 (2)	0.9052	1.00202(17)	0.050°
C38	1.0230 (2)	0.00033 (10)	1.09302 (17)	0.0517(5)
C20	1.0117	0.9447	1.1331	0.002°
U39	1.0885 (2)	0.82497 (10)	1.13030 (13)	0.0455 (4)
C/0	1.1200 1 10684 (17)	0.0407	1.2077	0.0330 (2)
U40 N1	1.10004(17)	0.73007(14)	1.07230(13) 0.52151(10)	0.0339(3)
INI NO	0.7000(13)	0.3/33/(11)	0.33131(10)	0.0520(3)
INZ	0.93013(14)	0.80420 (10)	0.010/0(10)	0.0279(3)
	1.33034 (13)	0.09429(12)	0.97008(11)	0.0333 (3)
пэр	1.318(2)	0.9009 (17)	0.9230 (18)	0.042 (0)*

N4	1.51724 (19)	0.81276 (16)	1.23737 (14)	0.0467 (4)
H4B	1.528 (2)	0.748 (2)	1.2318 (19)	0.057 (7)*
H4C	1.528 (3)	0.850(2)	1.291 (2)	0.067 (8)*
N5	1.16460 (15)	0.67181 (13)	1.11570 (12)	0.0373 (3)
H5B	1.176 (2)	0.6785 (19)	1.1757 (19)	0.048 (6)*
N6	1.04770 (17)	0.60697 (13)	0.80144 (12)	0.0378 (3)
H6A	1.054 (2)	0.5511 (19)	0.7603 (17)	0.044 (6)*
H6B	1.030 (2)	0.654 (2)	0.7758 (19)	0.054 (7)*
01	0.95524 (15)	0.70686 (9)	0.47217 (10)	0.0418 (3)
O2	0.97283 (16)	0.57032 (11)	0.35961 (11)	0.0493 (3)
O3	0.74543 (16)	0.70499 (11)	0.67476 (11)	0.0478 (3)
O4	0.59948 (17)	0.56796 (13)	0.70047 (12)	0.0566 (4)
O5	1.06120 (15)	0.78245 (10)	0.70856 (10)	0.0442 (3)
O6	1.22946 (16)	0.93578 (13)	0.80681 (12)	0.0601 (4)
07	0.69467 (15)	0.78226 (10)	0.47402 (11)	0.0497 (3)
08	0.64709 (14)	0.93215 (11)	0.45968 (11)	0.0454 (3)
O1W	0.5812 (2)	0.62222 (17)	0.27969 (14)	0.0649 (5)
H1WA	0.618 (3)	0.663 (3)	0.343 (3)	0.082 (10)*
H1WB	0.538 (3)	0.574 (3)	0.288 (3)	0.085 (12)*
O2W	0.61462 (19)	1.13490 (14)	0.52765 (15)	0.0605 (4)
H2WA	0.536 (3)	1.119 (2)	0.531 (2)	0.069 (9)*
H2WB	0.627 (3)	1.075 (3)	0.512 (3)	0.091 (11)*
O3W	1.1854 (2)	0.70163 (17)	1.31659 (12)	0.0679 (5)
H3WA	1.132 (3)	0.668 (2)	1.337 (2)	0.063 (8)*
H3WB	1.248 (3)	0.749 (2)	1.366 (2)	0.066 (8)*
Cu1	0.85947 (2)	0.735741 (15)	0.580449 (16)	0.03269 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0476 (10)	0.0303 (7)	0.0268 (7)	0.0145 (7)	0.0114 (7)	0.0070 (6)
C2	0.0465 (10)	0.0275 (7)	0.0262 (7)	0.0145 (7)	0.0087 (7)	0.0069 (6)
C3	0.0631 (12)	0.0274 (8)	0.0353 (9)	0.0142 (8)	0.0131 (9)	0.0040 (7)
C4	0.0692 (14)	0.0252 (8)	0.0489 (11)	0.0057 (8)	0.0124 (10)	0.0064 (7)
C5	0.0574 (12)	0.0342 (9)	0.0487 (11)	0.0061 (8)	0.0179 (10)	0.0156 (8)
C6	0.0449 (10)	0.0332 (8)	0.0330 (8)	0.0125 (7)	0.0117 (7)	0.0144 (7)
C7	0.0496 (11)	0.0411 (9)	0.0363 (9)	0.0173 (8)	0.0176 (8)	0.0153 (7)
C8	0.0445 (10)	0.0427 (9)	0.0312 (8)	0.0203 (8)	0.0099 (7)	0.0182 (7)
C9	0.0377 (8)	0.0313 (7)	0.0243 (7)	0.0147 (6)	0.0103 (6)	0.0098 (6)
C10	0.0358 (9)	0.0340 (8)	0.0330 (8)	0.0080 (7)	0.0057 (7)	0.0102 (6)
C11	0.0452 (10)	0.0275 (7)	0.0399 (9)	0.0103 (7)	0.0131 (8)	0.0125 (7)
C12	0.0421 (9)	0.0297 (7)	0.0338 (8)	0.0179 (7)	0.0118 (7)	0.0134 (6)
C13	0.0368 (8)	0.0278 (7)	0.0258 (7)	0.0158 (6)	0.0105 (6)	0.0079 (5)
C14	0.0388 (9)	0.0341 (8)	0.0302 (8)	0.0141 (7)	0.0078 (7)	0.0088 (6)
C15	0.0272 (8)	0.0317 (7)	0.0355 (8)	0.0074 (6)	0.0078 (6)	0.0098 (6)
C16	0.0402 (10)	0.0376 (9)	0.0483 (10)	0.0147 (7)	0.0123 (8)	0.0139 (8)
C17	0.0500 (12)	0.0358 (9)	0.0604 (13)	0.0164 (8)	0.0178 (10)	0.0059 (8)
C18	0.0597 (13)	0.0473 (11)	0.0450 (11)	0.0165 (10)	0.0130 (10)	-0.0011 (9)

C19	0.0531 (12)	0.0484 (11)	0.0329 (9)	0.0151 (9)	0.0063 (8)	0.0039 (8)
C20	0.0327 (8)	0.0362 (8)	0.0331 (8)	0.0085 (7)	0.0068 (7)	0.0081 (7)
C21	0.0269 (8)	0.0380 (8)	0.0327 (8)	0.0073 (6)	0.0045 (6)	0.0110 (7)
C22	0.0256 (7)	0.0339 (8)	0.0339 (8)	0.0097 (6)	0.0075 (6)	0.0120 (6)
C23	0.0327 (9)	0.0425 (9)	0.0452 (10)	0.0172 (7)	0.0105 (8)	0.0173 (8)
C24	0.0392 (10)	0.0427 (9)	0.0541 (11)	0.0202 (8)	0.0176 (9)	0.0124 (8)
C25	0.0465 (11)	0.0472 (10)	0.0386 (9)	0.0188 (8)	0.0157 (8)	0.0059 (8)
C26	0.0394 (9)	0.0441 (9)	0.0321 (8)	0.0153 (8)	0.0097 (7)	0.0107 (7)
C27	0.0251 (7)	0.0333 (7)	0.0329 (8)	0.0081 (6)	0.0083 (6)	0.0103 (6)
C28	0.0247 (8)	0.0403 (8)	0.0370 (8)	0.0071 (6)	0.0103 (7)	0.0168 (7)
C29	0.0315 (9)	0.0562 (11)	0.0479 (10)	0.0122 (8)	0.0106 (8)	0.0303 (9)
C30	0.0346 (10)	0.0521 (11)	0.0726 (14)	0.0173 (8)	0.0172 (10)	0.0382 (11)
C31	0.0388 (10)	0.0374 (9)	0.0721 (14)	0.0165 (8)	0.0181 (10)	0.0214 (9)
C32	0.0366 (9)	0.0340 (8)	0.0459 (10)	0.0139 (7)	0.0129 (8)	0.0119 (7)
C33	0.0274 (8)	0.0309 (7)	0.0359 (8)	0.0089 (6)	0.0112 (6)	0.0126 (6)
C34	0.0276 (7)	0.0285 (7)	0.0297 (7)	0.0082 (6)	0.0105 (6)	0.0076 (6)
C35	0.0304 (8)	0.0289 (7)	0.0313 (8)	0.0085 (6)	0.0122 (6)	0.0077 (6)
C36	0.0413 (9)	0.0339 (8)	0.0383 (9)	0.0145 (7)	0.0157 (8)	0.0110 (7)
C37	0.0541 (12)	0.0359 (9)	0.0586 (12)	0.0215 (8)	0.0256 (10)	0.0137 (8)
C38	0.0686 (14)	0.0380 (9)	0.0547 (12)	0.0198 (9)	0.0348 (11)	0.0055 (8)
C39	0.0558 (12)	0.0419 (9)	0.0355 (9)	0.0106 (8)	0.0217 (9)	0.0033 (7)
C40	0.0319 (8)	0.0351 (8)	0.0319 (8)	0.0062 (6)	0.0128 (7)	0.0072 (6)
N1	0.0453 (8)	0.0257 (6)	0.0286 (6)	0.0130 (6)	0.0116 (6)	0.0098 (5)
N2	0.0364 (7)	0.0258 (6)	0.0236 (6)	0.0139 (5)	0.0095 (5)	0.0069 (5)
N3	0.0337 (7)	0.0358 (7)	0.0306 (7)	0.0125 (6)	0.0070 (6)	0.0125 (6)
N4	0.0556 (11)	0.0490 (10)	0.0319 (8)	0.0210 (8)	0.0027 (7)	0.0129 (7)
N5	0.0361 (8)	0.0462 (8)	0.0268 (7)	0.0098 (6)	0.0092 (6)	0.0106 (6)
N6	0.0538 (10)	0.0346 (7)	0.0295 (7)	0.0224 (7)	0.0134 (7)	0.0085 (6)
01	0.0649 (9)	0.0268 (5)	0.0394 (7)	0.0151 (6)	0.0258 (6)	0.0101 (5)
O2	0.0661 (9)	0.0417 (7)	0.0405 (7)	0.0155 (6)	0.0283 (7)	0.0026 (6)
O3	0.0672 (9)	0.0363 (6)	0.0461 (7)	0.0177 (6)	0.0302 (7)	0.0097 (6)
O4	0.0685 (10)	0.0577 (9)	0.0557 (9)	0.0193 (8)	0.0371 (8)	0.0230 (7)
05	0.0600 (9)	0.0390 (7)	0.0414 (7)	0.0248 (6)	0.0132 (6)	0.0202 (5)
O6	0.0558 (9)	0.0604 (9)	0.0535 (9)	0.0176 (7)	-0.0084 (7)	0.0267 (7)
07	0.0516 (8)	0.0318 (6)	0.0496 (8)	0.0099 (6)	-0.0026 (7)	0.0055 (6)
08	0.0411 (7)	0.0431 (7)	0.0471 (7)	0.0201 (6)	0.0009 (6)	0.0107 (6)
O1W	0.0835 (13)	0.0531 (10)	0.0467 (9)	0.0119 (9)	0.0106 (9)	0.0166 (8)
O2W	0.0492 (10)	0.0411 (8)	0.0809 (12)	0.0085 (7)	0.0180 (9)	0.0082 (8)
O3W	0.0691 (12)	0.0796 (12)	0.0318 (8)	-0.0060 (10)	0.0135 (8)	0.0114 (8)
Cu1	0.04830 (13)	0.02337 (9)	0.02931 (10)	0.01400 (8)	0.01495 (9)	0.00781 (7)
Geometric pa	arameters (Å, °)					
C1—O2		1.238 (2)	C24—	-H24	0.93	300
C101		1.264 (2)	C25—	-C26	1 34	56 (3)
			c=0		1.5.	. (-)

C2 112	0.0200	C29 N5	1 261 (2)
C3—H3	0.9300	C28—N5	1.301(2)
C4—C3	1.384 (3)	C28—C29	1.405 (3)
C4—H4	0.9300	C28—C33	1.408 (2)
C5—C6	1.386 (3)	C29—C30	1.361 (3)
CS—HS	0.9300	C29—H29	0.9300
C6—N1	1.334 (2)	C30—C31	1.396 (3)
	1.519 (3)	C30—H30	0.9300
C/	1.231 (2)	C31—C32	1.370 (3)
C7—03	1.275 (2)	C31—H31	0.9300
C8—O6	1.242 (2)	C32—C33	1.412 (2)
C8—O5	1.255 (2)	C32—H32	0.9300
C8—C9	1.522 (2)	C33—C34	1.437 (2)
C9—N2	1.334 (2)	C34—N6	1.312 (2)
C9—C10	1.386 (2)	C34—C35	1.439 (2)
C10—C11	1.384 (3)	C35—C40	1.405 (2)
С10—Н10	0.9300	C35—C36	1.411 (2)
C11—C12	1.378 (3)	C36—C37	1.365 (2)
C11—H11	0.9300	С36—Н36	0.9300
C12—C13	1.386 (2)	C37—C38	1.396 (3)
C12—H12	0.9300	С37—Н37	0.9300
C13—N2	1.344 (2)	C38—C39	1.357 (3)
C13—C14	1.518 (3)	С38—Н38	0.9300
C14—O7	1.243 (2)	C39—C40	1.413 (2)
C14—O8	1.256 (2)	С39—Н39	0.9300
C15—N3	1.355 (2)	C40—N5	1.353 (2)
C15—C20	1.410 (2)	N1—Cu1	1.9128 (15)
C15—C16	1.411 (2)	N2—Cu1	1.9818 (14)
C16—C17	1.367 (3)	N3—H3B	0.83 (2)
С16—Н16	0.9300	N4—H4B	0.89 (3)
C17—C18	1.395 (3)	N4—H4C	0.78 (3)
C17—H17	0.9300	N5—H5B	0.80 (2)
C18—C19	1.361 (3)	N6—H6A	0.87 (2)
C18—H18	0.9300	N6—H6B	0.83 (3)
C19—C20	1.415 (3)	O1—Cu1	2.0680 (14)
С19—Н19	0.9300	O3—Cu1	2.0529 (15)
C20—C21	1.434 (2)	O5—Cu1	2.3150 (18)
C21—N4	1.324 (2)	O7—Cu1	2.3509 (16)
C21—C22	1.430 (2)	O1W—H1WA	0.87 (3)
C22—C27	1.412 (2)	O1W—H1WB	0.74 (3)
C22—C23	1.422 (2)	O2W—H2WA	0.85 (3)
C23—C24	1.358 (3)	O2W—H2WB	0.84 (3)
С23—Н23	0.9300	O3W—H3WA	0.79 (3)
C24—C25	1.407 (3)	O3W—H3WB	0.84 (3)
02—C1—O1	125.65 (17)	C26—C27—C22	120.30 (16)
02 - C1 - C2	119 24 (15)	N5-C28-C29	119 02 (17)
01 - C1 - C2	115.11 (15)	N5-C28-C33	120 47 (16)
N1 - C2 - C3	120 24 (17)	C_{29} C_{28} C_{33}	120.17(10) 120.51(17)
N1 - C2 - C1	112 35 (14)	$C_{20} = C_{20} = C_{20}$	119 69 (10)
C_{3} C_{2} C_{1}	12.33 (14)	C30_C29_H29	120.2
05 02 01	12/.71 (10)	(50, 02) (12)	120.2

C2—C3—C4	118.10 (18)	С28—С29—Н29	120.2
С2—С3—Н3	120.9	C29—C30—C31	120.72 (18)
С4—С3—Н3	120.9	С29—С30—Н30	119.6
C5—C4—C3	120.66 (17)	С31—С30—Н30	119.6
С5—С4—Н4	119.7	C32—C31—C30	120.51 (19)
C3—C4—H4	119.7	С32—С31—Н31	119.7
C4—C5—C6	118.41 (18)	С30—С31—Н31	119.7
С4—С5—Н5	120.8	C31—C32—C33	120.44 (19)
С6—С5—Н5	120.8	C31—C32—H32	119.8
N1—C6—C5	119.60 (17)	С33—С32—Н32	119.8
N1—C6—C7	112.28 (15)	C28—C33—C32	118.12 (16)
C5—C6—C7	128.11 (17)	C28—C33—C34	118.97 (15)
O4—C7—O3	126.43 (18)	C32—C33—C34	122.91 (16)
O4—C7—C6	119.43 (17)	N6-C34-C33	122.09 (15)
O3—C7—C6	114.13 (16)	N6-C34-C35	119.76 (15)
O6—C8—O5	128.25 (17)	C33—C34—C35	118.14 (14)
O6—C8—C9	115.80 (16)	C40—C35—C36	118.52 (15)
O5—C8—C9	115.94 (16)	C40—C35—C34	119.16 (15)
N2—C9—C10	121.76 (15)	C36—C35—C34	122.21 (15)
N2—C9—C8	116.30 (14)	C37—C36—C35	120.43 (18)
C10—C9—C8	121.93 (16)	С37—С36—Н36	119.8
C11—C10—C9	118.74 (16)	С35—С36—Н36	119.8
C11—C10—H10	120.6	C36—C37—C38	120.26 (19)
С9—С10—Н10	120.6	С36—С37—Н37	119.9
C12—C11—C10	119.29 (16)	С38—С37—Н37	119.9
C12—C11—H11	120.4	C39—C38—C37	121.25 (18)
C10-C11-H11	120.4	С39—С38—Н38	119.4
C11—C12—C13	119.24 (16)	С37—С38—Н38	119.4
C11—C12—H12	120.4	C38—C39—C40	119.34 (18)
C13—C12—H12	120.4	С38—С39—Н39	120.3
N2—C13—C12	121.16 (15)	С40—С39—Н39	120.3
N2-C13-C14	115.54 (14)	N5-C40-C35	120.55 (15)
C12—C13—C14	123.27 (15)	N5-C40-C39	119.33 (17)
O7—C14—O8	125.93 (17)	C35—C40—C39	120.11 (17)
O7—C14—C13	116.55 (16)	C2—N1—C6	122.94 (15)
O8—C14—C13	117.52 (15)	C2—N1—Cu1	118.54 (12)
N3—C15—C20	120.58 (16)	C6—N1—Cu1	118.50 (12)
N3—C15—C16	119.34 (17)	C9—N2—C13	119.80 (14)
C20-C15-C16	120.07 (17)	C9—N2—Cu1	119.28 (11)
C17—C16—C15	119.72 (19)	C13—N2—Cu1	120.54 (11)
С17—С16—Н16	120.1	C27—N3—C15	122.43 (15)
C15—C16—H16	120.1	C27—N3—H3B	118.2 (15)
C16—C17—C18	120.81 (19)	C15—N3—H3B	119.2 (15)
С16—С17—Н17	119.6	C21—N4—H4B	121.0 (16)
C18—C17—H17	119.6	C21—N4—H4C	119 (2)
C19—C18—C17	120.29 (19)	H4B—N4—H4C	119 (3)
C19—C18—H18	119.9	C40—N5—C28	122.49 (15)
C17—C18—H18	119.9	C40—N5—H5B	118.6 (17)
C18—C19—C20	121.1 (2)	C28—N5—H5B	117.4 (17)

С18—С19—Н19	119.4	C34—N6—H6A	122.4 (15)
С20—С19—Н19	119.4	C34—N6—H6B	120.2 (17)
C15—C20—C19	117.99 (17)	H6A—N6—H6B	117 (2)
C15-C20-C21	118.98 (16)	C1—O1—Cu1	114.16 (11)
C19—C20—C21	122.98 (17)	C7—O3—Cu1	115.04 (12)
N4—C21—C22	120.31 (17)	C8—O5—Cu1	111.55 (11)
N4—C21—C20	121.26 (17)	C14—O7—Cu1	111.16 (12)
C22—C21—C20	118.43 (15)	H1WA—O1W—H1WB	99 (3)
C27—C22—C23	117.95 (16)	H2WA—O2W—H2WB	105 (3)
C27—C22—C21	119.13 (15)	H3WA—O3W—H3WB	110 (3)
C23—C22—C21	122.92 (16)	N1—Cu1—N2	174.31 (6)
C24—C23—C22	120.64 (17)	N1—Cu1—O3	79.84 (6)
С24—С23—Н23	119.7	N2—Cu1—O3	104.50 (6)
С22—С23—Н23	119.7	N1—Cu1—O1	79.84 (6)
C23—C24—C25	120.51 (18)	N2—Cu1—O1	95.97 (6)
C23—C24—H24	119.7	O3—Cu1—O1	159.47 (5)
C25—C24—H24	119.7	N1—Cu1—O5	107.30 (7)
C26—C25—C24	120.74 (18)	N2—Cu1—O5	76.29 (6)
С26—С25—Н25	119.6	O3—Cu1—O5	94.39 (6)
C24—C25—H25	119.6	O1—Cu1—O5	88.91 (6)
C25—C26—C27	119.86 (18)	N1—Cu1—O7	101.06 (7)
С25—С26—Н26	120.1	N2—Cu1—O7	75.34 (6)
С27—С26—Н26	120.1	O3—Cu1—O7	91.72 (6)
N3—C27—C26	119.27 (16)	O1—Cu1—O7	94.95 (6)
N3—C27—C22	120.43 (15)	O5—Cu1—O7	151.61 (5)
O2—C1—C2—N1	178.92 (17)	C34—C35—C36—C37	177.81 (17)
01—C1—C2—N1	-0.9 (2)	C35—C36—C37—C38	1.0 (3)
O2—C1—C2—C3	-1.3 (3)	C36—C37—C38—C39	-2.0 (3)
O1—C1—C2—C3	178.93 (18)	C37—C38—C39—C40	0.3 (3)
N1—C2—C3—C4	1.4 (3)	C36—C35—C40—N5	175.36 (16)
C1—C2—C3—C4	-178.39 (19)	C34—C35—C40—N5	-0.9 (2)
C2—C3—C4—C5	-0.3 (3)	C36—C35—C40—C39	-3.3 (2)
C3—C4—C5—C6	-1.4 (3)	C34—C35—C40—C39	-179.61 (16)
C4—C5—C6—N1	2.2 (3)	C38—C39—C40—N5	-176.33 (18)
C4—C5—C6—C7	-176.8 (2)	C38—C39—C40—C35	2.4 (3)
N1—C6—C7—O4	-178.97 (18)	C3—C2—N1—C6	-0.7 (3)
C5—C6—C7—O4	0.0 (3)	C1—C2—N1—C6	179.14 (16)
N1—C6—C7—O3	0.0 (2)	C3—C2—N1—Cu1	-179.19 (14)
C5—C6—C7—O3	179.0 (2)	C1—C2—N1—Cu1	0.6 (2)
O6—C8—C9—N2	-171.91 (16)	C5-C6-N1-C2	-1.1 (3)
O5—C8—C9—N2	6.9 (2)	C7—C6—N1—C2	177.94 (16)
O6—C8—C9—C10	7.0 (3)	C5—C6—N1—Cu1	177.36 (15)
O5—C8—C9—C10	-174.13 (16)	C7—C6—N1—Cu1	-3.6 (2)
N2-C9-C10-C11	0.4 (3)	C10-C9-N2-C13	-1.5 (2)
C8—C9—C10—C11	-178.49 (16)	C8—C9—N2—C13	177.47 (14)
C9—C10—C11—C12	0.9 (3)	C10—C9—N2—Cu1	171.40 (13)
C10-C11-C12-C13	-1.1 (3)	C8—C9—N2—Cu1	-9.66 (18)
C11—C12—C13—N2	0.1 (2)	C12—C13—N2—C9	1.2 (2)
C11—C12—C13—C14	-177.93 (16)	C14—C13—N2—C9	179.38 (13)

N2-C13-C14-O7	-10.9 (2)	C12-C13-N2-Cu1	-171.55 (12)
C12—C13—C14—O7	167.20 (17)	C14—C13—N2—Cu1	6.61 (18)
N2-C13-C14-O8	168.95 (15)	C26—C27—N3—C15	-179.52 (16)
C12—C13—C14—O8	-12.9 (2)	C22—C27—N3—C15	0.4 (2)
N3-C15-C16-C17	178.92 (17)	C20—C15—N3—C27	0.5 (2)
C20-C15-C16-C17	-0.7 (3)	C16—C15—N3—C27	-179.13 (16)
C15—C16—C17—C18	0.2 (3)	C35—C40—N5—C28	-3.1 (3)
C16—C17—C18—C19	0.3 (4)	C39—C40—N5—C28	175.61 (16)
C17—C18—C19—C20	-0.4 (3)	C29—C28—N5—C40	-176.57 (16)
N3-C15-C20-C19	-178.98 (17)	C33—C28—N5—C40	3.4 (2)
C16—C15—C20—C19	0.6 (3)	O2—C1—O1—Cu1	-179.08 (16)
N3-C15-C20-C21	-1.6 (2)	C2—C1—O1—Cu1	0.7 (2)
C16—C15—C20—C21	178.05 (16)	O4—C7—O3—Cu1	-177.91 (17)
C18—C19—C20—C15	-0.1 (3)	C6—C7—O3—Cu1	3.2 (2)
C18—C19—C20—C21	-177.4 (2)	O6—C8—O5—Cu1	177.28 (18)
C15—C20—C21—N4	-177.40 (17)	C9—C8—O5—Cu1	-1.39 (19)
C19—C20—C21—N4	-0.1 (3)	O8—C14—O7—Cu1	-170.74 (15)
C15—C20—C21—C22	1.7 (2)	C13—C14—O7—Cu1	9.11 (19)
C19—C20—C21—C22	178.99 (17)	C2—N1—Cu1—O3	-177.34 (14)
N4—C21—C22—C27	178.29 (17)	C6—N1—Cu1—O3	4.08 (13)
C20—C21—C22—C27	-0.9 (2)	C2—N1—Cu1—O1	-0.23 (13)
N4—C21—C22—C23	-1.6 (3)	C6—N1—Cu1—O1	-178.81 (14)
C20—C21—C22—C23	179.26 (16)	C2—N1—Cu1—O5	-85.87 (14)
C27—C22—C23—C24	-0.4 (3)	C6—N1—Cu1—O5	95.56 (14)
C21—C22—C23—C24	179.45 (17)	C2—N1—Cu1—O7	92.88 (14)
C22—C23—C24—C25	1.3 (3)	C6—N1—Cu1—O7	-85.69 (14)
C23—C24—C25—C26	-1.3 (3)	C9—N2—Cu1—O3	97.70 (12)
C24—C25—C26—C27	0.5 (3)	C13—N2—Cu1—O3	-89.48 (13)
C25—C26—C27—N3	-179.69 (17)	C9—N2—Cu1—O1	-80.76 (12)
C25—C26—C27—C22	0.4 (3)	C13—N2—Cu1—O1	92.06 (12)
C23—C22—C27—N3	179.67 (15)	C9—N2—Cu1—O5	6.65 (11)
C21—C22—C27—N3	-0.2 (2)	C13—N2—Cu1—O5	179.47 (13)
C23—C22—C27—C26	-0.4 (2)	C9—N2—Cu1—O7	-174.33 (13)
C21—C22—C27—C26	179.73 (16)	C13—N2—Cu1—O7	-1.52 (12)
N5-C28-C29-C30	179.39 (17)	C7—O3—Cu1—N1	-3.98 (14)
C33—C28—C29—C30	-0.6 (3)	C7—O3—Cu1—N2	172.25 (14)
C28—C29—C30—C31	1.1 (3)	C7—O3—Cu1—O1	-12.1 (3)
C29—C30—C31—C32	-0.5 (3)	C7—O3—Cu1—O5	-110.80 (15)
C30—C31—C32—C33	-0.7 (3)	C7—O3—Cu1—O7	96.94 (15)
N5-C28-C33-C32	179.48 (15)	C1—O1—Cu1—N1	-0.30 (13)
C29—C28—C33—C32	-0.6 (2)	C1—O1—Cu1—N2	-176.41 (13)
N5-C28-C33-C34	0.4 (2)	C1—O1—Cu1—O3	7.8 (3)
C29—C28—C33—C34	-179.68 (15)	C1—O1—Cu1—O5	107.50 (14)
C31—C32—C33—C28	1.2 (3)	C1—O1—Cu1—O7	-100.67 (14)
C31—C32—C33—C34	-179.76 (17)	C8—O5—Cu1—N1	172.87 (12)
C28—C33—C34—N6	177.13 (16)	C8—O5—Cu1—N2	-2.54 (12)
C32—C33—C34—N6	-1.9 (3)	C8—O5—Cu1—O3	-106.42 (13)
C28—C33—C34—C35	-4.1 (2)	C8—O5—Cu1—O1	93.87 (13)
C32—C33—C34—C35	176.79 (15)	C8—O5—Cu1—O7	-4.55 (19)

N6-C34-C35-C40	-176.82 (16)	C14—O7—Cu1—N1		179.90 (13)	
C33—C34—C35—C40	4.4 (2)	C14—O7—Cu1—N2		-4.63 (13)	
N6-C34-C35-C36	7.1 (2)	C14—O7—Cu1—O3		99.91 (14)	
C33—C34—C35—C36	-171.71 (15)	C14—O7—Cu1—O1		-99.52 (14)	
C40—C35—C36—C37	1.7 (3)	C14—O7—Cu1—O5		-2.6 (2)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O1W—H1WA····O7	0.87 (4)	1.98 (4)	2.832 (2)	167 (4)	
O1W—H1WB···O4 ⁱ	0.74 (4)	2.14 (4)	2.877 (3)	175 (4)	
O2W—H2WA···O8 ⁱⁱ	0.84 (3)	1.98 (3)	2.820 (3)	174 (3)	
O2W—H2WB···O8	0.84 (4)	1.98 (4)	2.810 (3)	174 (4)	
O3W—H3WA···O2 ⁱⁱⁱ	0.79 (3)	2.01 (3)	2.787 (3)	169 (3)	
O3W—H3WB···O2W ^{iv}	0.84 (3)	1.89 (3)	2.730 (3)	175 (3)	
N3—H3B…O6	0.83 (2)	1.88 (2)	2.716 (2)	179 (3)	
$N4$ — $H4B$ ···O1 W^v	0.89 (3)	2.09 (3)	2.938 (3)	158 (2)	
N4—H4C···O8 ^v	0.77 (3)	2.27 (3)	2.972 (2)	152 (3)	
N5—H5B···O3W	0.80 (2)	1.91 (2)	2.703 (2)	173 (2)	
N6—H6A···O2 ^{vi}	0.87 (2)	1.97 (2)	2.819 (2)	164 (2)	
N6—H6B…O5	0.83 (3)	2.11 (3)	2.888 (2)	158 (2)	
Symmetry codes: (i) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (ii) - <i>x</i> +1, - <i>y</i> +2, - <i>z</i> +1; (iii) <i>x</i> , <i>y</i> , <i>z</i> +1; (iv) - <i>x</i> +2, - <i>y</i> +2, - <i>z</i> +2; (v) <i>x</i> +1, <i>y</i> , <i>z</i> +1; (vi) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1.					

Fig. 2